Fast computation of Bernoulli, Tangent and Secant numbers
نویسندگان
چکیده
We consider the computation of Bernoulli, Tangent (zag), and Secant (zig or Euler) numbers. In particular, we give asymptotically fast algorithms for computing the first n such numbers in O(n2(logn)2+o(1)) bit-operations. We also give very short in-place algorithms for computing the first n Tangent or Secant numbers in O(n2) integer operations. These algorithms are extremely simple, and fast for moderate values of n. They are faster and use less space than the algorithms of Atkinson (for Tangent and Secant numbers) and Akiyama and Tanigawa (for Bernoulli numbers).
منابع مشابه
Closed-form summation of two families of finite tangent sums
In our recent paper with Srivastava [D. Cvijović, H.M. Srivastava, Summation of a family of finite secant sums, Appl. Math. Comput. 190 (2007) 590–598] a remarkably general family of the finite secant sums was summed in closed form by choosing a particularly convenient integration contour and making use of the calculus of residues. In this sequel, we show that this procedure can be extended and...
متن کاملDerivative Polynomials, Euler Polynomials, and Associated Integer Sequences
Let Pn and Qn be the polynomials obtained by repeated differentiation of the tangent and secant functions respectively. From the exponential generating functions of these polynomials we develop relations among their values, which are then applied to various numerical sequences which occur as values of the Pn and Qn. For example, Pn(0) and Qn(0) are respectively the nth tangent and secant number...
متن کاملSecant and Cosecant Sums and Bernoulli-nörlund Polynomials
We give explicit formulae for sums of even powers of secant and cosecant values in terms of Bernoulli numbers and central factorial numbers.
متن کاملHigher-order tangent and secant numbers
In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: Keywords: Tangent numbers Tangent numbers of order k Secant numbers Secant numbers of order k Higher-order (or, generalized)...
متن کاملCOMBINATORICS OF GEOMETRICALLY DISTRIBUTED RANDOM VARIABLES: NEW q-TANGENT AND q-SECANT NUMBERS
Up-down permutations are counted by tangent (respectively, secant) numbers. Considering words instead, where the letters are produced by independent geometric distributions, there are several ways of introducing this concept; in the limit they all coincide with the classical version. In this way, we get some new q-tangent and q-secant functions. Some of them also have nice continued fraction ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1108.0286 شماره
صفحات -
تاریخ انتشار 2011